
Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

May/June 2024

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

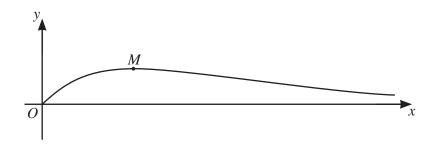
INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

1 (a) Sketch the graph of $y = [x - 2a]$, where a is a positive constant.	1 (a)	Sketch the graph of $y = x - 2a $	where a is a positive constant.	[1]
--	-------	------------------------------------	-----------------------------------	-----


(b)	Solve the inequality $2x - 3a < x - 2a $.	[2]

Express $\frac{6x^2 - 9x - 16}{2x^2 - 5x - 12}$ in partial fractions.	

,	Show that the graph of <i>y</i> against <i>x</i> is a straight line.	
		• • • • • • • • • • • • • • • • • • • •
b)	Given that $a = b^3$, state the equation of the straight line in the form $y = px + q$,	where <i>p</i> and
b)	Given that $a = b^3$, state the equation of the straight line in the form $y = px + q$, rational numbers in their simplest form.	where p and
b)		
b)	rational numbers in their simplest form.	
b)	rational numbers in their simplest form.	
b)	rational numbers in their simplest form.	
b)	rational numbers in their simplest form.	
b)	rational numbers in their simplest form.	
b)	rational numbers in their simplest form.	
b)	rational numbers in their simplest form.	
b)	rational numbers in their simplest form.	
b)	rational numbers in their simplest form.	
b)	rational numbers in their simplest form.	

Find the gradient of the curve at the point where <i>y</i>	= 1.

5	(a)	It is given that the equation $e^{2x} = 5 + \cos 3x$ has only one root.	
		Show by calculation that this root lies in the interval $0.7 \le x \le 0.8$.	[2]
			•••••
			•••••
			•••••
			•••••
			•••••
	(b)	Show that if a gazyanga of values in the interval 0.7 / y / 0.9 given by the iterative formula	•••••
	(b)		
		$x_{n+1} = \frac{1}{2} \ln \left(5 + \cos 3x_n \right)$	
		converges then it converges to the root of the equation in part (a).	[1]
	(c)	Use this iterative formula to determine the root correct to 3 decimal places. Give the result of eiteration to 5 decimal places.	each [3]
			•••••
			•••••

The diagram shows the curve $y = xe^{-ax}$, where a is a positive constant, and its maximum point M.

(a)	Find the exact coordinates of M .	[4]

© UCLES 2024

Find the exact value of $\int_0^{\frac{2}{a}} xe^{-\frac{1}{a}}$	ux.		[5
		 •••••	•••••
	•••••	 •••••	••••••
		 •••••	
		 •••••	
		 •••••	

7	(a)	Show that $\cos^4 \theta - \sin^4 \theta \equiv \cos 2\theta$.	[3]

Hence find the exact value of $\int_{-\frac{1}{8}\pi}^{\frac{1}{8}\pi} \left(\cos^4\theta - \sin^4\theta + 4\sin^2\theta\cos^2\theta\right) d\theta.$	6]
	•••
	••
	••
	•••
	•••
	•••
	••
	•••
	•••
	•••
	••
	••
	•••
	•••
	•••
	• -
	••
	••
	lence find the exact value of $\int_{-\frac{\pi}{2}}^{\pi} (\cos^2 \theta - \sin^2 \theta + 4 \sin^2 \theta \cos^2 \theta) d\theta$.

1)	Find a vector equation for l_1 .	[3]
		•••••
ha	a line I has equation $\mathbf{r} = -2\mathbf{i} + \mathbf{i} + A\mathbf{k} + \mu(3\mathbf{i} + \mathbf{i} - 2\mathbf{k})$	
	e line l_2 has equation $\mathbf{r} = -2\mathbf{i} + \mathbf{j} + 4\mathbf{k} + \mu(3\mathbf{i} + \mathbf{j} - 2\mathbf{k})$.	[4]
"	Find the coordinates of the point of intersection of l_1 and l_2 .	[4]
		•••••

•••••
•••••
•••••
 •••••
•••••
 •••••

(a)	Express $z\omega$ in the form $a+bi$, where a and b are real and in exact surd form.	[1]
		•••••
		•••••
(b)	Express z and ω in the form $re^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$. Give the exact values in each case.	of <i>r</i> and 6
		•••••
(c)	On an Argand diagram, the points representing ω and $z\omega$ are A and B respectively.	
	Prove that <i>OAB</i> is an isosceles right-angled triangle, where <i>O</i> is the origin.	[2

	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
$\sqrt{3}+1$	•••
Using your answers to part (b), prove that $\tan \frac{3}{12}\pi = \frac{\sqrt{3}+1}{\sqrt{3}-1}$.	3]
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	Using your answers to part (b), prove that $\tan \frac{s}{12}\pi = \frac{\sqrt{3}+1}{\sqrt{3}-1}$.

10	(a)	By writing $y = \sec^3 \theta$ as $\frac{1}{\cos^3 \theta}$, show that $\frac{dy}{d\theta} = 3\sin\theta \sec^4 \theta$.	2]
		$\cos^2\theta$ d θ	
			•
			•
			•
			•
			•
			•
			•
	(b)	The variables x and θ satisfy the differential equation	
		$(x^2+9)\sin\theta \frac{d\theta}{dx} = (x+3)\cos^4\theta.$	
		It is given that $x = 3$ when $\theta = \frac{1}{3}\pi$.	
		Solve the differential equation to find the value of $\cos \theta$ when $x = 0$. Give your answer correct t 3 significant figures.	
			•
			•
			•
			•
			•

 	•••••	•••••	
 	••••••	•••••	
	••••••	•••••	
 	•••••	•••••	
 	••••••	•••••	

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.		

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.